Categories

Z-Score Standardizer

Standardize numerical data using Z-score (standard score) normalization to transform values with mean=0 and standard deviation=1. Perfect for statistical analysis, machine learning feature preprocessing, outlier detection, and data comparison across different scales. Features: - Z-score standardization (mean=0, std=1) - Robust Z-score option (using median and MAD) - Custom scaling to target range - Multiple column selection - Automatic data type detection - Handles missing values intelligently - Preserves non-numeric columns - Comprehensive statistical summary - Outlier detection and reporting Common Use Cases: - Machine learning feature preparation - Statistical hypothesis testing - Outlier detection and removal - Data comparison across different units - Principal Component Analysis (PCA) preprocessing

Optional: Scale standardized values to target range. Leave empty for standard z-score output.

Values beyond this many standard deviations will be flagged as outliers

API Documentation

Request Endpoint

POST /en/api/tools/data-zscore-normalizer

Request Parameters

Parameter Name Type Required Description
inputData textarea Yes -
targetColumns textarea No -
standardizationType select No -
outputRange text No Optional: Scale standardized values to target range. Leave empty for standard z-score output.
handleMissing select No -
preserveOriginal checkbox No -
decimalPlaces number No -
includeStatistics checkbox No -
detectOutliers checkbox No -
outlierThreshold number No Values beyond this many standard deviations will be flagged as outliers

Response Format

{
  "result": "Processed text content",
  "error": "Error message (optional)",
  "message": "Notification message (optional)",
  "metadata": {
    "key": "value"
  }
}
Text: Text

AI MCP Documentation

Add this tool to your MCP server configuration:

{
  "mcpServers": {
    "elysiatools-data-zscore-normalizer": {
      "name": "data-zscore-normalizer",
      "description": "Standardize numerical data using Z-score (standard score) normalization to transform values with mean=0 and standard deviation=1. Perfect for statistical analysis, machine learning feature preprocessing, outlier detection, and data comparison across different scales.

Features:
- Z-score standardization (mean=0, std=1)
- Robust Z-score option (using median and MAD)
- Custom scaling to target range
- Multiple column selection
- Automatic data type detection
- Handles missing values intelligently
- Preserves non-numeric columns
- Comprehensive statistical summary
- Outlier detection and reporting

Common Use Cases:
- Machine learning feature preparation
- Statistical hypothesis testing
- Outlier detection and removal
- Data comparison across different units
- Principal Component Analysis (PCA) preprocessing",
      "baseUrl": "https://elysiatools.com/mcp/sse?toolId=data-zscore-normalizer",
      "command": "",
      "args": [],
      "env": {},
      "isActive": true,
      "type": "sse"
    }
  }
}

You can chain multiple tools, e.g.: `https://elysiatools.com/mcp/sse?toolId=png-to-webp,jpg-to-webp,gif-to-webp`, max 20 tools.

If you encounter any issues, please contact us at [email protected]