Z-Score Standardizer
Standardize numerical data using Z-score (standard score) normalization to transform values with mean=0 and standard deviation=1. Perfect for statistical analysis, machine learning feature preprocessing, outlier detection, and data comparison across different scales. Features: - Z-score standardization (mean=0, std=1) - Robust Z-score option (using median and MAD) - Custom scaling to target range - Multiple column selection - Automatic data type detection - Handles missing values intelligently - Preserves non-numeric columns - Comprehensive statistical summary - Outlier detection and reporting Common Use Cases: - Machine learning feature preparation - Statistical hypothesis testing - Outlier detection and removal - Data comparison across different units - Principal Component Analysis (PCA) preprocessing
API Documentation
Request Endpoint
Request Parameters
| Parameter Name | Type | Required | Description |
|---|---|---|---|
| inputData | textarea | Yes | - |
| targetColumns | textarea | No | - |
| standardizationType | select | No | - |
| outputRange | text | No | Optional: Scale standardized values to target range. Leave empty for standard z-score output. |
| handleMissing | select | No | - |
| preserveOriginal | checkbox | No | - |
| decimalPlaces | number | No | - |
| includeStatistics | checkbox | No | - |
| detectOutliers | checkbox | No | - |
| outlierThreshold | number | No | Values beyond this many standard deviations will be flagged as outliers |
Response Format
{
"result": "Processed text content",
"error": "Error message (optional)",
"message": "Notification message (optional)",
"metadata": {
"key": "value"
}
}
AI MCP Documentation
Add this tool to your MCP server configuration:
{
"mcpServers": {
"elysiatools-data-zscore-normalizer": {
"name": "data-zscore-normalizer",
"description": "Standardize numerical data using Z-score (standard score) normalization to transform values with mean=0 and standard deviation=1. Perfect for statistical analysis, machine learning feature preprocessing, outlier detection, and data comparison across different scales.
Features:
- Z-score standardization (mean=0, std=1)
- Robust Z-score option (using median and MAD)
- Custom scaling to target range
- Multiple column selection
- Automatic data type detection
- Handles missing values intelligently
- Preserves non-numeric columns
- Comprehensive statistical summary
- Outlier detection and reporting
Common Use Cases:
- Machine learning feature preparation
- Statistical hypothesis testing
- Outlier detection and removal
- Data comparison across different units
- Principal Component Analysis (PCA) preprocessing",
"baseUrl": "https://elysiatools.com/mcp/sse?toolId=data-zscore-normalizer",
"command": "",
"args": [],
"env": {},
"isActive": true,
"type": "sse"
}
}
}
You can chain multiple tools, e.g.: `https://elysiatools.com/mcp/sse?toolId=png-to-webp,jpg-to-webp,gif-to-webp`, max 20 tools.
If you encounter any issues, please contact us at [email protected]