Data Outlier Processor
Advanced outlier detection and processing tool that identifies, removes, or replaces anomalous values in numerical data using multiple statistical methods. Perfect for data cleaning, statistical analysis, and machine learning data preparation. Features: - Multiple detection methods (IQR, Z-score, Modified Z-score, Isolation Forest) - Flexible handling strategies (Remove, Replace with mean/median/mode, Cap) - Automatic threshold optimization - Multi-dimensional outlier detection - Visual outlier statistics and reporting - Batch processing capabilities - Custom sensitivity levels - Comprehensive impact analysis Common Use Cases: - Data cleaning and preprocessing - Statistical analysis preparation - Machine learning dataset cleaning - Quality control in manufacturing - Financial anomaly detection - Sensor data validation
API Documentation
Request Endpoint
Request Parameters
| Parameter Name | Type | Required | Description |
|---|---|---|---|
| inputData | textarea | Yes | - |
| targetColumns | textarea | No | - |
| detectionMethod | select | No | - |
| threshold | number | No | Sensitivity threshold for outlier detection. Lower values detect more outliers. |
| handlingStrategy | select | No | - |
| replacementMethod | select | No | - |
| preserveOriginal | checkbox | No | - |
| markOutliers | checkbox | No | Add columns to flag which values were detected as outliers |
| includeStatistics | checkbox | No | - |
| autoThreshold | checkbox | No | Automatically find optimal threshold based on data distribution |
| sensitivity | select | No | - |
Response Format
{
"result": "Processed text content",
"error": "Error message (optional)",
"message": "Notification message (optional)",
"metadata": {
"key": "value"
}
}
AI MCP Documentation
Add this tool to your MCP server configuration:
{
"mcpServers": {
"elysiatools-data-outlier-processor": {
"name": "data-outlier-processor",
"description": "Advanced outlier detection and processing tool that identifies, removes, or replaces anomalous values in numerical data using multiple statistical methods. Perfect for data cleaning, statistical analysis, and machine learning data preparation.
Features:
- Multiple detection methods (IQR, Z-score, Modified Z-score, Isolation Forest)
- Flexible handling strategies (Remove, Replace with mean/median/mode, Cap)
- Automatic threshold optimization
- Multi-dimensional outlier detection
- Visual outlier statistics and reporting
- Batch processing capabilities
- Custom sensitivity levels
- Comprehensive impact analysis
Common Use Cases:
- Data cleaning and preprocessing
- Statistical analysis preparation
- Machine learning dataset cleaning
- Quality control in manufacturing
- Financial anomaly detection
- Sensor data validation",
"baseUrl": "https://elysiatools.com/mcp/sse?toolId=data-outlier-processor",
"command": "",
"args": [],
"env": {},
"isActive": true,
"type": "sse"
}
}
}
You can chain multiple tools, e.g.: `https://elysiatools.com/mcp/sse?toolId=png-to-webp,jpg-to-webp,gif-to-webp`, max 20 tools.
If you encounter any issues, please contact us at [email protected]